List of existing databases on olives and olive oils

One objective of the OLEUM project is to establish an open access databank to store not only the information generated by the OLEUM consortium but also to be interoperable with already existing databases related to the characterisation of the olive tree germplasm and olive oils.

This report specifically summarises information on existing databases related to Olea europaea mainly curated in Europe but also in other part of the world. Information was gathered via the partners of the OLEUM consortium as well as available publications and internet consultations.

A total of 15 databases have been identified, of which 10 are web-based and currently accessible. However, an accessible database does not mean that necessarily the available information can be partially or entirely re-used in another database; reason why it is essential to contact each curator as a second step.

In order to identify an unknown monovarietal virgin olive oil cultivar, several reference databases have been established providing morphologic, DNA molecular markers and/or chemical data of worldwide olive trees and oils. The olive cultivar identification and olive oil authentication are especially important for protection of certified brands such as Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI).

Apparently, there is no database centralising the passport data of all the olive accessions distributed in the existing germplasm banks of olive. However, considering the information gathered, it seems that a significant percentage of the olive germplasm is conserved in the European germplasm banks; the two most important ones being the Worldwide Olive Germplasm bank of Cordoba and the CRAOLI collection, for which elaiographic cards are also available. These cards include morphological and agronomical data as well as a variety of molecular and chemical descriptors. A huge amount of work has been carried out in the past two decades to characterise cultivars by molecular markers, however results are disseminated in several databases or scientific publications.

Several databases are storing data on chemical composition of olive oils from conventional chemical analyses; e.g. fatty acids, triglycerides, organoleptic oil values. Only one database (i.e. Italian National Database of PDO/PGI Extra Virgin Olive Oils) is maintaining data from isotopic measurements as well as from a metabolomics approach.

By sharing or even integrating olive databases in the sense of the data FAIR principles recommended by the Horizon 2020 framework, it is expected to provide proper references to data, to allow them to be reused, to increase their reproducibility and to promote collaborations. Several technical platforms, portals and tools currently available for achieving such data management are discussed in the deliverable. Further tasks are also described for collaborating and exchanging data with curators of identified databases and to explore not yet listed databases.

Click here to read the full report.