To enable European and international regulators and policymakers with insights, updates from the scientific experts and needs from the stakeholders that can feed the path of regulatory standards, norms, and their harmonization:


  • OLEUM partners submitted a position paper on normative failures and inappropriateness and on analytical methods drawbacks to a scientific journal as gold open access.
  • The report on the common and emerging fraud cases has been finalized and submitted to a scientific journal, as open access contribution.
  • A protocol for the in-house validation of the analytical methods has been prepared; the selection of the four analytical methods and two sensory reference materials to be full validated was done; inter-laboratory experiments on these selected analytical methods and RMs are in course.


To enhance methodology for the organoleptic assessment by improving reproducibility and developing a conjoint instrumental and sensory quantitative enhanced procedure (Quantitative Panel Test), including the adoption of at least two sensory reference materials:


  • Samples were analyzed simultaneously by different instrumental techniques and the most relevant volatile compounds have been selected according to their sensory impact. Two shared protocols for the determination of volatile compounds (by SPME-GC-MS and SPME-GC-FID) and three analytical approaches (NMR, Flash-GC-e-nose and untargeted SPME-GC-MS) were tested as possible screening methods to support the IOC Panel test; the untargeted SPME-GC-MS method was proposed for full validation.
  • Two new artificial sensory reference materials (for the winey-vinegary and rancid defects) have been formulated ad hoc to resemble the defects and assessed by the OLEUM sensory panels for the detection threshold evaluation; their full validation it is in course with the contribution of panels not involved in the OLEUM project.


To investigate on the analytical methods for verifying the olive oil quality:


  • A series of extra virgin olive oil mixtures under different conditions of storage are being analyzed with different analytical tools (NMR, FT-IR, fluorescence spectroscopy, HPLC-MS/DAD-FLD, HS-SPME-GC/MS/FID) to evaluate the freshness/quality deterioration.
  • A selection of the analytical methods (e.g. UHPLC/HPLC-DAD/MS, LC-qTOF/MS) for the phenolic compounds determination (health claim) were tested with a set of selected samples covering a wide range of phenol concentrations; an in-house validated method for the determination of total hydroxytyrosol and tyrosol in virgin olive oils fits for the purpose of the health claim was published (Tsimidou et al., 2019). The pros of this recently published in house validated method are also discussed in another research paper (Tsimidou et al., 2019b). 
  • A research paper in which it is presented a portable battery-operated electronic system for a rapid measure of the olive oil free acidity was published (Grossi et al., 2019). 


To revise existing methods and to identify novel analytical markers with the aim of developing and validating innovative analytical solutions for ensuring the olive oil authenticity (illegal blends between extra virgin olive oil and soft deodorized olive oil, and between olive oil and other vegetable oils):


  • The involved OLEUM partners analyzed samples of illegal (soft-deodorized OOs and vegetable oils) and legal (vegetable oils) blends with olive oil and extra virgin olive oils. A method  proposing the revision of the preparative step of the official method for the FAEEs separation was proposed and in-house validated, as well as a revised method for determining sterols to detect illegal blends of OOs with other vegetable oils.
  • Extra virgin and virgin olive oils were analyzed for assessing the geographical origin (Single State, EU, non-EU countries). Several chromatographic and spectroscopic analysis were discussed in the deliverable D4.9, as well as many useful analytical markers to establish the conformity of label-declared geographical origin.


To promote open-access knowledge generation and dissemination by making globally available all the information coming from OLEUM research:


  • OLEUM Databank in a ready-to-use beta version was launched.


To undertake technology transfer of new methods and procedures to a wide analytical community and to assess its proficiency by specific fit-for-purpose actions (e.g. analytical discussions, needs of ring tests):


  • Full validation and technology transfer processes are in course for four methods:  1) method  to detect blends of EVOOs with soft-deodorized OOs with a revision of the preparative step of the FAEEs separation;  2) revised method to determine sterols to detect illegal blends of OOs with other vegetable oils; 3) method for the determination of the phenolic compounds (health claim); 4) Quantitative Panel Test.


To engage the widest range of stakeholders (opinion leaders/regulators, food and drink industries including SMEs, the media, the scientific community, consumers) in the dissemination, exploitation and knowledge exchange: 


  • At now about 200 candidate members were invited to join the OLEUM Network and 62 members are now on board. The OLEUM Network LinkedIn group has been activated (OLEUM question of the months: https://www.linkedin.com/groups/13511637), as well as an on-line platform specifically dedicated to host the Network.
  • An infographic for public dissemination on the production of olive oil and one on how to recognize a good quality extra virgin olive was realized, as well as a short video presenting the project is under finalization.


All activity, results, and achievements of OLEUM during the previous years, can be found here.



Conte L., Bendini A., Valli E., Lucci P., Moret S., Maquet A., Lacoste F., Brereton P., García-Gonzáles D. L., Moreda W., Gallina Toschi T. 2019. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends in Food Science & Technology, DOI: 10.1016/j.tifs.2019.02.025. In press.


Gallina Toschi T., Valli E., Conte L., García-Gonzáles D. L., Maquet A., Brereton P., Mcgrath N., Celemín L. F., Bendini A. 2017. EU project OLEUM: Better solutions to protect olive oil quality and authenticity. Agro Food Industry Hi-Tech 28 (5), pp. 2-3, https://zenodo.org/record/1184863#.WsccF5e-lPY


Grossi M., Palagano R., Bendini A., Riccò B., Servili M., García-González D. L., Gallina Toschi T. 2019. Design and in-house validation of a portable system for the determination of free acidity in virgin olive oil. Food Control 104, pp. 208–216, DOI: 10.1016/j.foodcont.2019.04.019.


Tsimidou M. Z., Nenadis N., Servili M., García-Gonzáles D. L., Gallina Toschi T. 2018. Why tyrosol derivatives have to be quantified in the calculation of “olive oil polyphenols” content to support the health claim provisioned in the EC Reg. 432/2012. European Journal of Lipid Science and Technology, DOI: 10.1002/ejlt.201800098.


Tsimidou M. Z., Sotiroglou M., Mastralexi A., Nenadis N., García-González D. L., Gallina Toschi T. 2019. In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for “Olive Oil Polyphenols”. Molecules 24, 1044, DOI:10.3390/molecules24061044.


Tsimidou M. Z., Nenadis N., Mastralexi A., Servili M., Butinar B., Vichi S., Winkelmann O., García-Gonzáles D. L., Gallina Toschi T. 2019b. Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). The Pros of a Fit for the Purpose Ultra High Performance Liquid Chromatography (UHPLC). Molecules 24, 2429, DOI:10.3390/molecules24132429.


Nenadis N., Mastralexi A., Tsimidou M.Z., Vichi S., Quintanilla-Casas B., Donarski J., Bailey-Horne V., Butinar B., Miklavčič M., García González D.-L., Gallina Toschi T. 2018. Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). Extraction Solvent. European Journal of Lipid Science and Technology, DOI: 10.1002/ejlt.201800099